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The phenomenon of thermocapillary convection was considered in [I] using the example of 
motion of a thin liquid layer in the central portion of a planar cuvette, the opposite walls 
of which were maintained at different temperatures, with the assumption of constant layer 
thickness. The heat-transfer equation in the liquid was not used, and a linear temperature 
distribution was postulated on the free surface. This inconsistency was noted in [2], which 
solved the analogous problem of motion of a liquid under the action of a surfactant additive. 
The effects of gravity and deformation of the liquid-free surface in the problem of [I] were 
considered in [3]. Finally, [4] found an exact solution of the free convection equations for 
a planar liquid layer with constant temperature gradient along the column. As in [5], it 
was found that in sufficiently thin liquid layers (less than i cm) the thermocapillary con- 
vection mechanism predominates. .The flow velocity profile for the case of thermocapillary 
motion coincides with that obtained in [I]. Physically, the solution of [4] corresponds to 
the unrealistic case of a liquid layer heated from below in a manner such that with an in- 
homogeneous temperature distribution on the layer boundaries the heat flux through the bound- 

aries is homogeneous. 

The goal of the present study is an examination of steady-state two-dimensional thermo- 
capillary motion which arises in a thin liquid layer due to localized heating from above. In 
this case convection due to Archimedean forces may be neglected. The liquid velocity and 
temperature fields are determined with the assumption that the layer thickness h is much less 
than the characteristic longitudinal flow dimension ~, making it possible to use the ap- 
proximations of boundary-layer theory. In the first approximation we will also neglect de- 
formation of the liquid-free surface. The liquid layer bounded by the free surface (y = 0) 
and the solid wall (y =--h) locally heated from the direction of the free surface. Directing 
the x axis opposite to the temperature gradient along the layer, we will consider convection 
in the region x > 0, removed from the heating point by a distance ~h, where the effect of the 
flow rotation zone and the details of the mechanism by which heating is accomplished have no 
effect. Thus, at x > 0 the condition ~T/3y = 0 on the free surface and the temperature dif- 
ference AT = To -- Tw across the layer in the initial section x = 0 are specified. The tem- 
perature of the cuvette bottom T w is assumed constant, which corresponds to contact of the 
liquid with a good heat conductor of large dimensions or contact between liquid and solid 
phases of the same material. In the case considered, the equations of steady-state free con- 
vection and the boundary conditions have the form 

8ulOx -F OvlOg - -  O, Op/Ox = ~102ulSg 2, Op/Og =- O, 

u.STtOx -~- vOl'/Oy = %021"18y2; 

Tly = - h  = T ~ ,  OT/Syly=o = O, ~lSu/Og]y= o = dcx/dx = - - a O T / O x l ~ =  o, 

u l y  = - i ,  = v l .  = - h  - -  O,  vly = o = O ,  

(i) 

(2) 

where o is the surface tension coefficient; a =--do/dT = const. Inertial terms have been 
omitted from the equation of motion in Eq. (I). The conditions under which they may be neg- 
lected will be indicated after a solution is obtained, since no characteristic velocity fig- 
ures in the problem under consideration. We will limit our examination to the case in which 
the total liquid flux in any section is equal to zero 

0 

S udg = O. 
- -h  
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Substituting Eq. 
variables 

0 = (T  - -  T ,~ ) I (To  - -  T,~,), z l h  - :  x' ,  !/lh = y ' ,  

we obtain (primes on the coordinates are omitted) 

- -  (7' (!s) ~ ~--=o ~ + a (.7/) \ o x U ~ j = o  ~ '  = ~ o : f '  

where G(y) = ~/3y(l + y)a, M = haAT/hx; M is the Marangoni number. 
of variables e = xY may be carried out if 

X'2 = k2X,  

where  k i s  a n o n z e r o  s e p a r a t i o n  c o n s t a n t .  The s o l u t i o n s  of  Eq. 

X = (t +_ kx/2)  2, 

Integrating the equations of motion and continuity, we find 

, o o  ~ (s  
u - , ~  ~ t~ )~ :o t , r  + 41,;+, + l~-~), ,; = ~ t ox,~/~=oSS (~, + h ) t  ( 3 )  

(3) in the thermal conductivity equation and transforming to dimensionless 

(4) 

In Eq. (4) the separation 

(5) 

(5) have the form 

( 6 )  

i n  wh ich  f o r  l i q u i d  t e m p e r a t u r e  d e c r e a s i n g  w i t h  i n c r e a s e  i n  x the  minus s i g n  must be chosen, 
Thus, to determine the function Y, we arrive at the spectral problem 

Y "  - -  XGY' + 2 ~ G ' Y  = O, Y ( - - I )  = O, Y ' ( O )  = 0 (7) 

with parameter X = 3kiM/8. For the case under consideration, it is sufficient to limit our- 
selves to the smallest positive eigenvalue Xo, since the corresponding eigenfunction Yo has 
no nodes within the liquid layer (states corresponding to subsequent eigennumbers will not 
be considered). We will use the Galerkin method. Equation (7) may be written in operator 
form 

ATr = ~ Y .  

The o p e r a t o r  N i s  n o t  s e l f - c o n j u g a t e  and  p o s i t i v e l y  d e f i n e d .  T h e r e f o r e ,  a c c o r d i n g  to  [ 6 ] ,  
one  s h o u l d  employ  a p p r o x i m a t i o n s  of  t h e  f u n c t i o n s  w i ,  f o r  w h i c h  

O 0 

~ w ~ d y > 0 ,  ~ ~ w , ~ d ~ > 0  (~r (8) 

Wi thou t  a t t e m p t i n g  an e x a c t  c a l c u l a t i o n  o f  the  f i r s t  e i g e n v a l u e  and e i g e n f u n c t i o n ,  we 
w i l l  l i m i t  o u r s e l v e s  to a b i n o m i a l  a p p r o x i m a t e  s o l u t i o n  

Y = Clw 1 + 62w2, (9) 

whe re  w~ = 1 -- y 2 ,  wu = 1 + y3 s a t i s f y  t h e  b o u n d a r y  c o n d i t i o n s  (2)  and  c o n d i t i o n s  ( 8 ) .  S u b -  
s t i t u t i n g  Eq. (9) in Eq. (7) and commencing from the requirement of orthogonality of the 
equation residue to the approximating functions, we arrive at a system of linear Galerkin 
equations for the coefficients Cz and C=. Solution of the characteristic equation gives 
Xo = 5.58. The corresponding eigenfunction satisfying the condition y(0) = 1 has the form 

Y___1--0,55Gy 2 +0A44y ~ 

The solution obtained may be written in the form 

where 

~ =  ( ~. ~T"t,: 2 l / ~  (zz) 
D " ~ 0 , 5 2 h y ~ ,  v 0 = I =:, I "% \ qZ ) - -  P "  7~ " 
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Thus, the convection has a cellular structure with longitudinal period I. At x = l the heat 
flux disappears, so the characteristic scale 1 is the length to which heat propagates from 
the source. If a wall is placed in the section x = I and maintained at an unperturbed tem- 
perature Tw, then the solution will describe thermocapillary motion in a cuvette heated from 
the other end. 

In the segment 0 < x < 21 Eq. (i0) describes convection in a cuvette symmetrically 
heated from above at both ends. In this case, two convective cells are formed in the liquid, 
with the liquid velocity at their common boundary x = 1 being directed downward. Finally, 
if for negative x we use the second solution of Eq. (6), the solution on the interval --1 < 
x < I will describe liquid motion in a cuvette outside the zone at which heat is applied in 
the center. In this case two convective cells with descending liquid flow at the heating 
point are also formed. The character of the liquid motion remains as before, if h varies 
only slightly with coordinate x. Thus it is not difficult to sketch out a convection pat- 
tern for more general nonsymmetric cases. For example, in the case of a liquid layer of 
great length one can imagine a combined convective cell 21 in length, in tbe limits of which 
temperature perturbation is localized and a flow of the form of Eq. (i0) develops. The 
treatment of Eq. (ii) relating h and I can also be generalized in the following fashion. If 
the liquid layer is sufficiently deep and the size of the zone I which is perturbed by local 
heating of the free surface is known, then, according to Eq. (ii), we may determine the thick- 
ness of the layer which is set into motion. The condition h << I or M >> 1 is valid over a 
wide parameter range. For example, for water and ethanol it is necessary that hAT >> 10 -4 , 
while for mercury hAT >> 10 -2 . 

One of the main goals of this study is the determination of the flow velocity. The 
maximum velocity vo is reached on the surface and, according to Eq. (ii), will depend on all 
thermophysical characteristics of the liquid. In [i, 3, 4] the expression 

ha dT 
l~ q d x '  (12) 

was o b t a i n e d ,  w i t h  the  t e m p e r a t u r e  g r a d i e n t  b e i n g  s p e c i f i e d  e q u a l  to  (T1 -- T 2 ) / L ,  where L i s  
the  c h a n n e l  l e n g t h .  A c c o r d i n g  to  Eq. (12 ) ,  t he  m o t i o n  v e l o c i t y  i s  i n d e p e n d e n t  o f  t h e r m a l  
c o n d u c t i v i t y  c o e f f i c i e n t  and i n c r e a s e s  w i t h  i n c r e a s e  i n  h.  The l a s t  s t a t e m e n t  [1] c o n t r a -  
d i c t s  the  p h y s i c a l  p a t t e r n  of  t he  phenomenon.  In  f a c t ,  t h e  s o u r c e  of  t he  m o t i o n  i s  t a n g e n t  
s t r e s s  on the  f r e e  s u r f a c e ,  p r o d u c e d  by a g r a d i e n t  in  t he  s u r f a c e  t e n s i o n  c o e f f i c i e n t .  I f  
this quantity is fixed, then the thinner the liquid layer induced into motion, the greater 
will be its velocity. Apparently this contradiction can be explained by the fact that if 
convective heat transfer is significant solutions of the thermal conductivity equation with 
ST/~x = const at y = 0 do not in general exist in the liquid. The study of the question set 
forth in the works cited above is not complete, and must be complemented by determining the 
temperature gradient for each concrete case. A correct answer can be obtained for the pres- 
ent case if in Eq. (12) we substituted (dT/dx) = AT~1 and use the relationship between h and 
1 given by Eq. (ii). The velocity increases with decrease in h and increase in X. The X- 
dependence is explained by the fact that with increase in thermal conductivity 1 decreases 
and the temperature gradient on the surface increases. The flow lines (in dimensionless 
variables x', y') are given by the equation 

IG@')l(l - ~ x ' )  = C, 

where ~i = h/1. They are shown in Fig. 1 for ~i = 0.i. Figure 2 shows the isotherms (num- 
bers on the curves are e values). 

In conclusion, we note that if vo is known, an expression can be developed for the 
similarity criteria. For example, for the Peclet number we have 

Pe = Vo21/% = (~AT21/~%) 2/3 ~ M, 

i.e., the Peclet and Marangoni numbers coincide for this problem. Then Eq. (ii) relating h 
and 1 may be written in a form similar to the expression for boundary-layer thickness on a 
plate 

h = 2~l V P F ~ ,  

889 



,iF: 
i i J  o 

~l I "  

0 ~" 
! ~ I 

J 

Fig. 1 Fig. 2 

io 

where Pr = ~/• is the Prandtl number and Re = vo21/v is the Reynolds number. Thus, the case 
of convection considered corresponds to motion with large Peclet numbers. We will now evalu- 
ate the conditions for applicability of this treatment more accurately. Using Eq. (i0), it 
can be shown that the condition 

I~au!axl << ~ la~lay~ 1 

can be satisfied if Pr >> I/6. This inequality is satisfied by the majority of droplet- 
forming liquids. The theory is inapplicable to liquid metals which have Pr << i. In that 
case, inertia of the liquid has an important role. 

The authors is indebted to A. V. Zharinov for his interest in and evaluation of the 
study. 
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